Topic:Diabetic Retinopathy Detection
What is Diabetic Retinopathy Detection? Diabetic retinopathy detection is the process of identifying and diagnosing the growth of abnormal blood vessels and damage in the retina due to high blood sugar from diabetes, using deep learning techniques.
Papers and Code
Jan 27, 2025
Abstract:Deep learning has emerged as a transformative approach for solving complex pattern recognition and object detection challenges. This paper focuses on the application of a novel detection framework based on the RT-DETR model for analyzing intricate image data, particularly in areas such as diabetic retinopathy detection. Diabetic retinopathy, a leading cause of vision loss globally, requires accurate and efficient image analysis to identify early-stage lesions. The proposed RT-DETR model, built on a Transformer-based architecture, excels at processing high-dimensional and complex visual data with enhanced robustness and accuracy. Comparative evaluations with models such as YOLOv5, YOLOv8, SSD, and DETR demonstrate that RT-DETR achieves superior performance across precision, recall, mAP50, and mAP50-95 metrics, particularly in detecting small-scale objects and densely packed targets. This study underscores the potential of Transformer-based models like RT-DETR for advancing object detection tasks, offering promising applications in medical imaging and beyond.
Via
Jan 21, 2025
Abstract:The prevalence of ocular illnesses is growing globally, presenting a substantial public health challenge. Early detection and timely intervention are crucial for averting visual impairment and enhancing patient prognosis. This research introduces a new framework called Class Extension with Limited Data (CELD) to train a classifier to categorize retinal fundus images. The classifier is initially trained to identify relevant features concerning Healthy and Diabetic Retinopathy (DR) classes and later fine-tuned to adapt to the task of classifying the input images into three classes: Healthy, DR, and Glaucoma. This strategy allows the model to gradually enhance its classification capabilities, which is beneficial in situations where there are only a limited number of labeled datasets available. Perturbation methods are also used to identify the input image characteristics responsible for influencing the models decision-making process. We achieve an overall accuracy of 91% on publicly available datasets.
* Accepted at International Conference on Pattern Recognition (ICPR)
2024
Via
Jan 13, 2025
Abstract:Purpose: Diabetic retinopathy (DR) is a major cause of vision loss, particularly in India, where access to retina specialists is limited in rural areas. This study aims to evaluate the Artificial Intelligence-based Diabetic Retinopathy Screening System (AIDRSS) for DR detection and prevalence assessment, addressing the growing need for scalable, automated screening solutions in resource-limited settings. Approach: A multicentric, cross-sectional study was conducted in Kolkata, India, involving 5,029 participants and 10,058 macula-centric retinal fundus images. The AIDRSS employed a deep learning algorithm with 50 million trainable parameters, integrated with Contrast Limited Adaptive Histogram Equalization (CLAHE) preprocessing for enhanced image quality. DR was graded using the International Clinical Diabetic Retinopathy (ICDR) Scale, categorizing disease into five stages (DR0 to DR4). Statistical metrics including sensitivity, specificity, and prevalence rates were evaluated against expert retina specialist assessments. Results: The prevalence of DR in the general population was 13.7%, rising to 38.2% among individuals with elevated random blood glucose levels. The AIDRSS achieved an overall sensitivity of 92%, specificity of 88%, and 100% sensitivity for detecting referable DR (DR3 and DR4). These results demonstrate the system's robust performance in accurately identifying and grading DR in a diverse population. Conclusions: AIDRSS provides a reliable, scalable solution for early DR detection in resource-constrained environments. Its integration of advanced AI techniques ensures high diagnostic accuracy, with potential to significantly reduce the burden of diabetes-related vision loss in underserved regions.
* 22 pages, 5 figures. arXiv admin note: substantial text overlap with
arXiv:1812.07105 by other authors without attribution
Via
Jan 04, 2025
Abstract:Diabetic Retinopathy (DR) is a major cause of blindness worldwide, caused by damage to the blood vessels in the retina due to diabetes. Early detection and classification of DR are crucial for timely intervention and preventing vision loss. This work proposes an automated system for DR detection using Convolutional Neural Networks (CNNs) with a residual block architecture, which enhances feature extraction and model performance. To further improve the model's robustness, we incorporate advanced data augmentation techniques, specifically leveraging a Deep Convolutional Generative Adversarial Network (DCGAN) for generating diverse retinal images. This approach increases the variability of training data, making the model more generalizable and capable of handling real-world variations in retinal images. The system is designed to classify retinal images into five distinct categories, from No DR to Proliferative DR, providing an efficient and scalable solution for early diagnosis and monitoring of DR progression. The proposed model aims to support healthcare professionals in large-scale DR screening, especially in resource-constrained settings.
Via
Jan 01, 2025
Abstract:Diabetic Retinopathy (DR) is a leading cause of preventable blindness. Early detection at the DR1 stage is critical but is hindered by a scarcity of high-quality fundus images. This study uses StyleGAN3 to generate synthetic DR1 images characterized by microaneurysms with high fidelity and diversity. The aim is to address data scarcity and enhance the performance of supervised classifiers. A dataset of 2,602 DR1 images was used to train the model, followed by a comprehensive evaluation using quantitative metrics, including Frechet Inception Distance (FID), Kernel Inception Distance (KID), and Equivariance with respect to translation (EQ-T) and rotation (EQ-R). Qualitative assessments included Human Turing tests, where trained ophthalmologists evaluated the realism of synthetic images. Spectral analysis further validated image quality. The model achieved a final FID score of 17.29, outperforming the mean FID of 21.18 (95 percent confidence interval - 20.83 to 21.56) derived from bootstrap resampling. Human Turing tests demonstrated the model's ability to produce highly realistic images, though minor artifacts near the borders were noted. These findings suggest that StyleGAN3-generated synthetic DR1 images hold significant promise for augmenting training datasets, enabling more accurate early detection of Diabetic Retinopathy. This methodology highlights the potential of synthetic data in advancing medical imaging and AI-driven diagnostics.
* 13 pages, 11 figures
Via
Dec 28, 2024
Abstract:This paper explores and enhances the application of Transfer Learning (TL) for multilabel image classification in medical imaging, focusing on brain tumor class and diabetic retinopathy stage detection. The effectiveness of TL-using pre-trained models on the ImageNet dataset-varies due to domain-specific challenges. We evaluate five pre-trained models-MobileNet, Xception, InceptionV3, ResNet50, and DenseNet201-on two datasets: Brain Tumor MRI and APTOS 2019. Our results show that TL models excel in brain tumor classification, achieving near-optimal metrics. However, performance in diabetic retinopathy detection is hindered by class imbalance. To mitigate this, we integrate the Synthetic Minority Over-sampling Technique (SMOTE) with TL and traditional machine learning(ML) methods, which improves accuracy by 1.97%, recall (sensitivity) by 5.43%, and specificity by 0.72%. These findings underscore the need for combining TL with resampling techniques and ML methods to address data imbalance and enhance classification performance, offering a pathway to more accurate and reliable medical image analysis and improved patient outcomes with minimal extra computation powers.
* Accepted in 27th International Conference on Computer and Information
Technology (ICCIT) 2024
Via
Dec 03, 2024
Abstract:Diabetic Retinopathy is one of the most familiar diseases and is a diabetes complication that affects eyes. Initially, diabetic retinopathy may cause no symptoms or only mild vision problems. Eventually, it can cause blindness. So early detection of symptoms could help to avoid blindness. In this paper, we present some experiments on some features of diabetic retinopathy, like properties of exudates, properties of blood vessels and properties of microaneurysm. Using the features, we can classify healthy, mild non-proliferative, moderate non-proliferative, severe non-proliferative and proliferative stages of DR. Support Vector Machine, Random Forest and Naive Bayes classifiers are used to classify the stages. Finally, Random Forest is found to be the best for higher accuracy, sensitivity and specificity of 76.5%, 77.2% and 93.3% respectively.
* 5 pages, 9 figures, 2 tables. International Conference on Advanced
Engineering, Technology and Applications (ICAETA-2021), Istanbul, Turkey
Via
Nov 16, 2024
Abstract:Diabetic retinopathy is a leading cause of blindness around the world and demands precise AI-based diagnostic tools. Traditional loss functions in multi-class classification, such as Categorical Cross-Entropy (CCE), are very common but break down with class imbalance, especially in cases with inherently challenging or overlapping classes, which leads to biased and less sensitive models. Since a heavy imbalance exists in the number of examples for higher severity stage 4 diabetic retinopathy, etc., classes compared to those very early stages like class 0, achieving class balance is key. For this purpose, we propose the Adaptive Hybrid Focal-Entropy Loss which combines the ideas of focal loss and entropy loss with adaptive weighting in order to focus on minority classes and highlight the challenging samples. The state-of-the art models applied for diabetic retinopathy detection with AHFE revealed good performance improvements, indicating the top performances of ResNet50 at 99.79%, DenseNet121 at 98.86%, Xception at 98.92%, MobileNetV2 at 97.84%, and InceptionV3 at 93.62% accuracy. This sheds light into how AHFE promotes enhancement in AI-driven diagnostics for complex and imbalanced medical datasets.
* 9 pages,7 figures
Via
Nov 02, 2024
Abstract:Diabetic Retinopathy DR is a severe complication of diabetes. Damaged or abnormal blood vessels can cause loss of vision. The need for massive screening of a large population of diabetic patients has generated an interest in a computer-aided fully automatic diagnosis of DR. In the realm of Deep learning frameworks, particularly convolutional neural networks CNNs, have shown great interest and promise in detecting DR by analyzing retinal images. However, several challenges have been faced in the application of deep learning in this domain. High-quality, annotated datasets are scarce, and the variations in image quality and class imbalances pose significant hurdles in developing a dependable model. In this paper, we demonstrate the proficiency of two Convolutional Neural Networks CNNs based models, UNET and Stacked UNET utilizing the APTOS Asia Pacific Tele-Ophthalmology Society Dataset. This system achieves an accuracy of 92.81% for the UNET and 93.32% for the stacked UNET architecture. The architecture classifies the images into five categories ranging from 0 to 4, where 0 is no DR and 4 is proliferative DR.
Via
Nov 25, 2024
Abstract:Fundus images are widely used for diagnosing various eye diseases, such as diabetic retinopathy, glaucoma, and age-related macular degeneration. However, manual analysis of fundus images is time-consuming and prone to errors. In this report, we propose a novel method for fundus detection using object detection and machine learning classification techniques. We use a YOLO_V8 to perform object detection on fundus images and locate the regions of interest (ROIs) such as optic disc, optic cup and lesions. We then use machine learning SVM classification algorithms to classify the ROIs into different DR stages based on the presence or absence of pathological signs such as exudates, microaneurysms, and haemorrhages etc. Our method achieves 84% accuracy and efficiency for fundus detection and can be applied for retinal fundus disease triage, especially in remote areas around the world.
* Education and Society (2024)
* 9 pages, 11 figures, Journal Paper
Via