Topic:Diabetic Retinopathy Detection
What is Diabetic Retinopathy Detection? Diabetic retinopathy detection is the process of identifying and diagnosing the growth of abnormal blood vessels and damage in the retina due to high blood sugar from diabetes, using deep learning techniques.
Papers and Code
Dec 28, 2024
Abstract:This paper explores and enhances the application of Transfer Learning (TL) for multilabel image classification in medical imaging, focusing on brain tumor class and diabetic retinopathy stage detection. The effectiveness of TL-using pre-trained models on the ImageNet dataset-varies due to domain-specific challenges. We evaluate five pre-trained models-MobileNet, Xception, InceptionV3, ResNet50, and DenseNet201-on two datasets: Brain Tumor MRI and APTOS 2019. Our results show that TL models excel in brain tumor classification, achieving near-optimal metrics. However, performance in diabetic retinopathy detection is hindered by class imbalance. To mitigate this, we integrate the Synthetic Minority Over-sampling Technique (SMOTE) with TL and traditional machine learning(ML) methods, which improves accuracy by 1.97%, recall (sensitivity) by 5.43%, and specificity by 0.72%. These findings underscore the need for combining TL with resampling techniques and ML methods to address data imbalance and enhance classification performance, offering a pathway to more accurate and reliable medical image analysis and improved patient outcomes with minimal extra computation powers.
* Accepted in 27th International Conference on Computer and Information
Technology (ICCIT) 2024
Via
Dec 03, 2024
Abstract:Diabetic Retinopathy is one of the most familiar diseases and is a diabetes complication that affects eyes. Initially, diabetic retinopathy may cause no symptoms or only mild vision problems. Eventually, it can cause blindness. So early detection of symptoms could help to avoid blindness. In this paper, we present some experiments on some features of diabetic retinopathy, like properties of exudates, properties of blood vessels and properties of microaneurysm. Using the features, we can classify healthy, mild non-proliferative, moderate non-proliferative, severe non-proliferative and proliferative stages of DR. Support Vector Machine, Random Forest and Naive Bayes classifiers are used to classify the stages. Finally, Random Forest is found to be the best for higher accuracy, sensitivity and specificity of 76.5%, 77.2% and 93.3% respectively.
* 5 pages, 9 figures, 2 tables. International Conference on Advanced
Engineering, Technology and Applications (ICAETA-2021), Istanbul, Turkey
Via
Nov 16, 2024
Abstract:Diabetic retinopathy is a leading cause of blindness around the world and demands precise AI-based diagnostic tools. Traditional loss functions in multi-class classification, such as Categorical Cross-Entropy (CCE), are very common but break down with class imbalance, especially in cases with inherently challenging or overlapping classes, which leads to biased and less sensitive models. Since a heavy imbalance exists in the number of examples for higher severity stage 4 diabetic retinopathy, etc., classes compared to those very early stages like class 0, achieving class balance is key. For this purpose, we propose the Adaptive Hybrid Focal-Entropy Loss which combines the ideas of focal loss and entropy loss with adaptive weighting in order to focus on minority classes and highlight the challenging samples. The state-of-the art models applied for diabetic retinopathy detection with AHFE revealed good performance improvements, indicating the top performances of ResNet50 at 99.79%, DenseNet121 at 98.86%, Xception at 98.92%, MobileNetV2 at 97.84%, and InceptionV3 at 93.62% accuracy. This sheds light into how AHFE promotes enhancement in AI-driven diagnostics for complex and imbalanced medical datasets.
* 9 pages,7 figures
Via
Nov 25, 2024
Abstract:Fundus images are widely used for diagnosing various eye diseases, such as diabetic retinopathy, glaucoma, and age-related macular degeneration. However, manual analysis of fundus images is time-consuming and prone to errors. In this report, we propose a novel method for fundus detection using object detection and machine learning classification techniques. We use a YOLO_V8 to perform object detection on fundus images and locate the regions of interest (ROIs) such as optic disc, optic cup and lesions. We then use machine learning SVM classification algorithms to classify the ROIs into different DR stages based on the presence or absence of pathological signs such as exudates, microaneurysms, and haemorrhages etc. Our method achieves 84% accuracy and efficiency for fundus detection and can be applied for retinal fundus disease triage, especially in remote areas around the world.
* Education and Society (2024)
* 9 pages, 11 figures, Journal Paper
Via
Nov 02, 2024
Abstract:Diabetic Retinopathy DR is a severe complication of diabetes. Damaged or abnormal blood vessels can cause loss of vision. The need for massive screening of a large population of diabetic patients has generated an interest in a computer-aided fully automatic diagnosis of DR. In the realm of Deep learning frameworks, particularly convolutional neural networks CNNs, have shown great interest and promise in detecting DR by analyzing retinal images. However, several challenges have been faced in the application of deep learning in this domain. High-quality, annotated datasets are scarce, and the variations in image quality and class imbalances pose significant hurdles in developing a dependable model. In this paper, we demonstrate the proficiency of two Convolutional Neural Networks CNNs based models, UNET and Stacked UNET utilizing the APTOS Asia Pacific Tele-Ophthalmology Society Dataset. This system achieves an accuracy of 92.81% for the UNET and 93.32% for the stacked UNET architecture. The architecture classifies the images into five categories ranging from 0 to 4, where 0 is no DR and 4 is proliferative DR.
Via
Nov 06, 2024
Abstract:Diabetic Retinopathy (DR) is a primary cause of blindness, necessitating early detection and diagnosis. This paper focuses on referable DR classification to enhance the applicability of the proposed method in clinical practice. We develop an advanced cross-learning DR classification method leveraging transfer learning and cross-attention mechanisms. The proposed method employs the Swin U-Net architecture to segment lesion maps from DR fundus images. The Swin U-Net segmentation model, enriched with DR lesion insights, is transferred to generate a lesion map. Both the fundus image and its segmented lesion map are used as complementary inputs for the classification model. A cross-attention mechanism is deployed to improve the model's ability to capture fine-grained details from the input pairs. Our experiments, utilizing two public datasets, FGADR and EyePACS, demonstrate a superior accuracy of 94.6%, surpassing current state-of-the-art methods by 4.4%. To this end, we aim for the proposed method to be seamlessly integrated into clinical workflows, enhancing accuracy and efficiency in identifying referable DR.
* ACCV 2024 accepted
Via
Oct 04, 2024
Abstract:Although binary classification is a well-studied problem, training reliable classifiers under severe class imbalance remains a challenge. Recent techniques mitigate the ill effects of imbalance on training by modifying the loss functions or optimization methods. We observe that different hyperparameter values on these loss functions perform better at different recall values. We propose to exploit this fact by training one model over a distribution of hyperparameter values--instead of a single value--via Loss Conditional Training (LCT). Experiments show that training over a distribution of hyperparameters not only approximates the performance of several models but actually improves the overall performance of models on both CIFAR and real medical imaging applications, such as melanoma and diabetic retinopathy detection. Furthermore, training models with LCT is more efficient because some hyperparameter tuning can be conducted after training to meet individual needs without needing to retrain from scratch.
Via
Oct 17, 2024
Abstract:The diagnosis of diabetic retinopathy, which relies on fundus images, faces challenges in achieving transparency and interpretability when using a global classification approach. However, segmentation-based databases are significantly more expensive to acquire and combining them is often problematic. This paper introduces a novel method, termed adversarial style conversion, to address the lack of standardization in annotation styles across diverse databases. By training a single architecture on combined databases, the model spontaneously modifies its segmentation style depending on the input, demonstrating the ability to convert among different labeling styles. The proposed methodology adds a linear probe to detect dataset origin based on encoder features and employs adversarial attacks to condition the model's segmentation style. Results indicate significant qualitative and quantitative through dataset combination, offering avenues for improved model generalization, uncertainty estimation and continuous interpolation between annotation styles. Our approach enables training a segmentation model with diverse databases while controlling and leveraging annotation styles for improved retinopathy diagnosis.
* preprint
Via
Sep 25, 2024
Abstract:Integrating deep learning into medical imaging is poised to greatly advance diagnostic methods but it faces challenges with generalizability. Foundation models, based on self-supervised learning, address these issues and improve data efficiency. Natural domain foundation models show promise for medical imaging, but systematic research evaluating domain adaptation, especially using self-supervised learning and parameter-efficient fine-tuning, remains underexplored. Additionally, little research addresses the issue of catastrophic forgetting during fine-tuning of foundation models. We adapted the DINOv2 vision transformer for retinal imaging classification tasks using self-supervised learning and generated two novel foundation models termed DINORET and BE DINORET. Publicly available color fundus photographs were employed for model development and subsequent fine-tuning for diabetic retinopathy staging and glaucoma detection. We introduced block expansion as a novel domain adaptation strategy and assessed the models for catastrophic forgetting. Models were benchmarked to RETFound, a state-of-the-art foundation model in ophthalmology. DINORET and BE DINORET demonstrated competitive performance on retinal imaging tasks, with the block expanded model achieving the highest scores on most datasets. Block expansion successfully mitigated catastrophic forgetting. Our few-shot learning studies indicated that DINORET and BE DINORET outperform RETFound in terms of data-efficiency. This study highlights the potential of adapting natural domain vision models to retinal imaging using self-supervised learning and block expansion. BE DINORET offers robust performance without sacrificing previously acquired capabilities. Our findings suggest that these methods could enable healthcare institutions to develop tailored vision models for their patient populations, enhancing global healthcare inclusivity.
* J.Zoellin, C. Merk and M. Buob contributed equally as shared-first
authors. D. Cabrera DeBuc, M. D. Becker and G. M. Somfai contributed equally
as senior authors for this work
Via
Sep 06, 2024
Abstract:This study presents a dataset consisting of 268 retinal images from 179 individuals, including 133 left-eye and 135 right-eye images, collected from Natasha Eye Care and Research Institute in Pune, Maharashtra, India. The images were captured using a nonmydriatic Optical Coherence Tomography Angiography (OCTA) device, specifically the Optovue Avanti Edition machine as per the protocol mentioned in this paper. Two ophthalmologists then annotated the images. This dataset can be used by researchers and doctors to develop automated diagnostic tools for early detection of diabetic retinopathy (DR).
* 11 pages
Via